博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
排序四 希尔排序
阅读量:6341 次
发布时间:2019-06-22

本文共 2118 字,大约阅读时间需要 7 分钟。

要点

希尔(Shell)排序又称为缩小增量排序,它是一种插入排序。它是直接插入排序算法的一种威力加强版

该方法因DLShell1959年提出而得名。

希尔排序的基本思想是:

把记录按步长 gap 分组,对每组记录采用直接插入排序方法进行排序。

随着步长逐渐减小,所分成的组包含的记录越来越多,当步长的值减小到 1 时,整个数据合成为一组,构成一组有序记录,则完成排序。

我们来通过演示图,更深入的理解一下这个过程。 

在上面这幅图中:

初始时,有一个大小为 10 的无序序列。

第一趟排序中,我们不妨设 gap1 = N / 2 = 5,即相隔距离为 5 的元素组成一组,可以分为 5 组。

接下来,按照直接插入排序的方法对每个组进行排序。

第二趟排序中,我们把上次的 gap 缩小一半,即 gap2 = gap1 / 2 = 2 (取整数)。这样每相隔距离为 2 的元素组成一组,可以分为 2 组。

按照直接插入排序的方法对每个组进行排序。

第三趟排序中,再次把 gap 缩小一半,即gap3 = gap2 / 2 = 1 这样相隔距离为 1 的元素组成一组,即只有一组。

按照直接插入排序的方法对每个组进行排序。此时,排序已经结束

需要注意一下的是,图中有两个相等数值的元素 5  5 。我们可以清楚的看到,在排序过程中,两个元素位置交换了

所以,希尔排序是不稳定的算法。

核心代码

public 
void shellSort(
int[] list) {
    
int gap = list.length / 2;
 
    
while (1 <= gap) {
        
//
 把距离为 gap 的元素编为一个组,扫描所有组
        
for (
int i = gap; i < list.length; i++) {
            
int j = 0;
            
int temp = list[i];
 
            
//
 对距离为 gap 的元素组进行排序
            
for (j = i - gap; j >= 0 && temp < list[j]; j = j - gap) {
                list[j + gap] = list[j];
            }
            list[j + gap] = temp;
        }
 
        System.out.format("gap = %d:\t", gap);
        printAll(list);
        gap = gap / 2; 
//
 减小增量
    }
}

算法分析

希尔排序的算法性能

排序类别

排序方法

时间复杂度

空间复杂度

稳定性

复杂性

平均情况

最坏情况

最好情况

插入排序

希尔排序

O(Nlog2N)

O(N1.5)

 

O(1)

不稳定

较复杂

 

时间复杂度

步长的选择是希尔排序的重要部分。只要最终步长为1任何步长序列都可以工作。

算法最开始以一定的步长进行排序。然后会继续以一定步长进行排序,最终算法以步长为1进行排序。当步长为1时,算法变为插入排序,这就保证了数据一定会被排序。

Donald Shell 最初建议步长选择为N/2并且对步长取半直到步长达到1。虽然这样取可以比O(N2)类的算法(插入排序)更好,但这样仍然有减少平均时间和最差时间的余地。可能希尔排序最重要的地方在于当用较小步长排序后,以前用的较大步长仍然是有序的。比如,如果一个数列以步长5进行了排序然后再以步长3进行排序,那么该数列不仅是以步长3有序,而且是以步长5有序。如果不是这样,那么算法在迭代过程中会打乱以前的顺序,那就

不会以如此短的时间完成排序了。

步长序列

最坏情况下复杂度

已知的最好步长序列是由Sedgewick提出的(1, 5, 19, 41, 109,...),该序列的项来自

这两个算式。

这项研究也表明“比较在希尔排序中是最主要的操作,而不是交换。”用这样步长序列的希尔排序比插入排序和堆排序都要快,甚至在小数组中比快速排序还快,但是在涉及大量数据时希尔排序还是比快速排序慢。

 

算法稳定性

由上文的希尔排序算法演示图即可知,希尔排序中相等数据可能会交换位置,所以希尔排序是不稳定的算法。

 

直接插入排序和希尔排序的比较

直接插入排序是稳定的;而希尔排序是不稳定的。

直接插入排序更适合于原始记录基本有序的集合。

希尔排序的比较次数和移动次数都要比直接插入排序少,当N越大时,效果越明显。   

在希尔排序中,增量序列gap的取法必须满足:最后一个步长必须是 1  

直接插入排序也适用于链式存储结构;希尔排序不适用于链式结构

 

完整参考代码

JAVA版本

代码实现

范例代码中的初始序列和本文图示中的序列完全一致。

 
View Code

运行结果

排序前:      9    1    2    5    7    4    8    6    3    5    
gap = 5:    4    1    2    3    5    9    8    6    5    7    
gap = 2:    2    1    4    3    5    6    5    7    8    9    
gap = 1:    1    2    3    4    5    5    6    7    8    9    
排序后:      1    2    3    4    5    5    6    7    8    9   

本文转自静默虚空博客园博客,原文链接:http://www.cnblogs.com/jingmoxukong/p/4303279.html,如需转载请自行联系原作者

你可能感兴趣的文章
linux命令(42):tr命令
查看>>
Oracle执行SQL报错ORA-00922
查看>>
swagger学习2
查看>>
Bootstrap modal使用及点击外部不消失的解决方法
查看>>
13.Linux键盘按键驱动 (详解)
查看>>
机器学习的学习方式及学习算法的类别【转】
查看>>
YUM源、磁盘基础知识 CDN概念
查看>>
stylus入门使用方法
查看>>
使用VS2013自带的PreEmptive Dotfuscator and Analytis来混淆C#代码
查看>>
防盗链之URL参数签名 总结
查看>>
IDEA使用--字体、编码和基本设置
查看>>
[日常] nginx与location规则
查看>>
环境部署(四):Linux下查看JDK安装路径
查看>>
MeasureOverride 和 ArrangeOverride
查看>>
mysql开启慢查询日志
查看>>
判断runtime是否运行在docker中及从docker中获取宿主机的ip信息
查看>>
备份xx
查看>>
js 根据title从下级往上级查找
查看>>
域账号更改密码之后代理需要重新配置
查看>>
分布式锁与实现(二)——基于ZooKeeper实现
查看>>